Package: bayesCT (via r-universe)

September 10, 2024

Type Package

Title Simulation and Analysis of Adaptive Bayesian Clinical Trials

Version 0.99.3.9000

Description Simulation and analysis of Bayesian adaptive clinical trials for binomial, continuous, and time-to-event data types, incorporates historical data and allows early stopping for futility or early success. The package uses novel and efficient Monte Carlo methods for estimating Bayesian posterior probabilities, evaluation of loss to follow up, and imputation of incomplete data. The package has the functionality for dynamically incorporating historical data into the analysis via the power prior or non-informative priors.

LazyLoad yes

License GPL-3 | file LICENSE

NeedsCompilation no

URL https://github.com/thevaachandereng/bayesCT/

BugReports https://github.com/thevaachandereng/bayesCT/issues/

Encoding UTF-8 Depends R (>= 2.10) LazyData true RoxygenNote 7.1.0 Suggests knitr, devtools, pkgdown, rmarkdown, testthat VignetteBuilder knitr Imports bayesDP, dplyr, survival, magrittr (>= 1.5), purrr Repository https://thevaachandereng.r-universe.dev RemoteUrl https://github.com/thevaachandereng/bayesct RemoteRef HEAD RemoteSha e94419c3c079608b22cdc0e82aa052a5a20c6238

analysis

42

Contents

analysis
beta_prior
binomialBACT
binomialdata
binomial_analysis
binomial_outcome
data_binomial
data_normal
data_survival
enrollment
enrollment_rate
gamma_prior
historical_binomial
historical_normal
historical_survival
hypothesis
impute
normalBACT
normaldata
normal_analysis
normal_outcome
pw_exp_impute
pw_exp_sim
randomization
randomize
simulate
study details
survivalBACT
survivaldata
survival analysis
survival outcome

Index

analysis

Analysis wrapper function

Description

Wrapper function to analyze Bayesian trials.

analysis

Usage

```
analysis(
    input,
    type = "binomial",
    N_max_treatment = NULL,
    N_max_control = NULL,
    .data = NULL
)
```

Arguments

input	list. Input function for all the analysis.
type	character. Type of analysis to be ran (binomial (default), normal. etc.).
N_max_treatment	
	integer. Maximum allowable sample size for the treatment arm (including the currently enrolled subjects). Default is NULL, meaning we are already at the final analysis.
N_max_control	integer. Maximum allowable sample size for the control arm (including the currently enrolled subjects). Default is NULL, meaning we are already at the final analysis.
.data	NULL. Stores the binomial data for analysis. Should not be edited by user.

Value

A list with results of the analysis of Bayesian trial.

- prob_of_accepting_alternative scalar. The input parameter of probability of accepting the alternative.
- margin scalar. The margin input value of difference between mean estimate of treatment and mean estimate of the control.
- alternative character. The input parameter of alternative hypothesis.
- N_treatment scalar. The number of patients enrolled in the experimental group for each simulation.
- N_control scalar. The number of patients enrolled in the control group for each simulation.
- N_enrolled vector. The number of patients enrolled in the trial (sum of control and experimental group for each simulation.)
- N_complete scalar. The number of patients who completed the trial and had no loss to follow-up.
- post_prob_accept_alternative vector. The final probability of accepting the alternative hypothesis after the analysis is done.
- est_final scalar. The final estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.
- stop_futility scalar. Did the trial stop for futility during imputation of patients who had loss to follow up? 1 for yes and 0 for no.
- stop_expected_success scalar. Did the trial stop for early success during imputation of patients who had loss to follow up? 1 for yes and 0 for no.

beta_prior

Description

Wrapper function for beta prior beta(a0, b0).

Usage

beta_prior(a0 = 1, b0 = 1, .data = NULL)

Arguments

a0	numeric. The first shape parameter in the beta distribution (beta(a0, b0)).
b0	numeric. The second shape parameter in the beta distribution (beta(a0, b0)).
.data	NULL. Stores the proportion of control and treatment. Should not be edited by the user.

Value

A list with vector of beta rate for the beta prior for treatment and control group.

Examples

 $beta_prior(a0 = 1, b0 = 1)$

binomialBACT Binomial counts for Bayesian adaptive trials

Description

Simulation for binomial counts for Bayesian adaptive trials with different inputs to control for power, sample size, type 1 error rate, etc.

Usage

```
binomialBACT(
  p_treatment,
  p_control = NULL,
  y0_treatment = NULL,
  N0_treatment = NULL,
  y0_control = NULL,
  N0_control = NULL,
  N_total,
```

binomialBACT

```
lambda = 0.3,
lambda_time = NULL,
interim_look = NULL,
EndofStudy,
prior = c(1, 1),
block = 2,
rand_ratio = c(1, 1),
prop_loss_to_followup = 0.1,
alternative = "greater",
h0 = 0,
futility_prob = 0.05,
expected_success_prob = 0.9,
prob_ha = 0.95,
N_{impute} = 10,
number_mcmc = 10000,
discount_function = "identity",
alpha_max = 1,
fix_alpha = FALSE,
weibull_scale = 0.135,
weibull_shape = 3,
method = "fixed"
```

Arguments

)

p_treatment	scalar. Proportion of events under the treatment arm.
p_control	scalar. Proportion of events under the control arm.
y0_treatment	scalar. Number of events for the historical treatment arm.
N0_treatment	scalar. Sample size of the historical treatment arm.
y0_control	scalar. Number of events for the historical control arm.
N0_control	scalar. Sample size of the historical control arm.
N_total	scalar. Total sample size.
lambda	vector. Enrollment rates across simulated enrollment times. See enrollment for more details.
lambda_time	vector. Enrollment time(s) at which the enrollment rates change. Must be same length as lambda. See enrollment for more details.
interim_look	vector. Sample size for each interim look. Note: the maximum sample size should not be included.
EndofStudy	scalar. Length of the study.
prior	vector. Prior values of beta rate, Beta(a0, b0). The default is set to Beta(1, 1).
block	scalar. Block size for generating the randomization schedule.
rand_ratio	vector. Randomization allocation for the ratio of control to treatment. Integer values mapping the size of the block. See randomization for more details.
<pre>prop_loss_to_fo</pre>	llowup
	scalar. Overall proportion of subjects lost to follow-up.

alternative	character. The string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".
hØ	scalar. Threshold for comparing two mean values. Default is $h0 = 0$.
futility_prob	scalar. Probability of stopping early for futility.
expected_succes	ss_prob
	scalar. Probability of stopping early for success.
prob_ha	scalar. Probability of alternative hypothesis.
N_impute	scalar. Number of imputations for Monte Carlo simulation of missing data.
number_mcmc	scalar. Number of Markov Chain Monte Carlo draws in sampling posterior.
discount_funct	ion
	character. If incorporating historical data, specify the discount function. Cur- rently supports the Weibull function (discount_function = "weibull"), the scaled-Weibull function (discount_function = "scaledweibull"), and the iden- tity function (discount_function = "identity"). The scaled-Weibull discount function scales the output of the Weibull CDF to have a maximum value of 1. The identity discount function uses the posterior probability directly as the dis- count weight. Default value is "identity". See bdpnormal for more details.
alpha_max	scalar. Maximum weight the discount function can apply. Default is 1. For a two-arm trial, users may specify a vector of two values where the first value is used to weight the historical treatment group and the second value is used to weight the historical control group.
fix_alpha	logical. Fix alpha at alpha_max? Default value is FALSE.
weibull_scale	scalar. Scale parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 0.135. For a two- arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
weibull_shape	scalar. Shape parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 3. For a two-arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
method	character. Analysis method with respect to estimation of the weight parameter alpha. Default method "mc" estimates alpha for each Monte Carlo iteration. Al- ternate value "fixed" estimates alpha once and holds it fixed throughout the analysis. See the the bdpsurvival vignette vignette("bdpsurvival-vignette", package="bayesDP") for more details.

Value

A list of output for a single trial simulation:

p_treatment scalar. The input parameter of proportion of events in the treatment group.

binomialdata

- p_control scalar. The input parameter of proportion of events in the control group.
- prob_of_accepting_alternative scalar. The input parameter of probability threshold of accepting the alternative.
- margin scalar. The margin input value of difference between mean estimate of treatment and mean estimate of the control.
- alternative character. The input parameter of alternative hypothesis.
- interim_look vector. The sample size for each interim look.
- N_treatment scalar. The number of patients enrolled in the experimental group for each simulation.
- N_control scalar. The number of patients enrolled in the control group for each simulation.
- N_enrolled vector. The number of patients enrolled in the trial (sum of control and experimental group for each simulation.)
- N_complete scalar. The number of patients who completed the trial and had no loss to follow-up.
- post_prob_accept_alternative vector. The final probability of accepting the alternative hypothesis after the analysis is done.
- est_final scalar. The final estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.
- stop_futility scalar. Did the trial stop for futility during imputation of patient who had loss to follow up? 1 for yes and 0 for no.
- stop_expected_success scalar. Did the trial stop for early success during imputation of patient who had loss to follow up? 1 for yes and 0 for no.
- est_interim scalar. The interim estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.
- binomialdata Binomial dataset for analyzing adaptive Bayesian trials

Description

A dataset containing the results of 300 patients with binomial outcome, the dataset is filled with loss to follow up.

Usage

```
data(binomialdata)
```

Format

A data frame with 300 rows and 4 variables:

id Patient ID in the trial.

treatment Treatment assignment for patients, 1 for treatment group 0 for control group.

outcome Binomial outcome of the trial, 1 for response (success or failure), 0 for no response.

complete 1 for complete outcome, 0 for loss to follow-up.

Examples

data(binomialdata)

binomial_analysis Analyzing a Bayesian trial for binomial counts

Description

Function to analyze a Bayesian trial for binomial count data which allows for early stopping and incorporation of historical data using the discount function approach.

Usage

```
binomial_analysis(
  treatment,
  outcome,
  complete = NULL,
  p_treatment = 0,
 N_max_treatment = NULL,
 N_max_control = NULL,
 y0_treatment = NULL,
 N0_treatment = NULL,
 y0\_control = NULL,
 N0_control = NULL,
  alternative = "greater",
 N_{impute} = 10,
 h0 = 0,
  number_mcmc = 10000,
 prob_ha = 0.95,
  futility_prob = 0.1,
  expected_success_prob = 0.9,
  prior = c(1, 1),
  discount_function = "identity",
  fix_alpha = FALSE,
  alpha_max = 1,
 weibull_scale = 0.135,
 weibull_shape = 3,
 method = "fixed"
)
```

treatment	vector. Treatment assignment for patients, 1 for treatment group and 0 for control group
outcome	vector. Binomial outcome of the trial, 1 for response (success or failure), 0 for
	no response.

complete	vector. Similar length as treatment and outcome variable, 1 for complete out- come, 0 for loss to follow up. If complete is not provided, the dataset is assumed to be complete.
p_treatment	scalar. Proportion of events under the treatment arm.
N_max_treatment	
	currently enrolled subjects). Default is NULL, meaning we are already at the final analysis.
N_max_control	integer. Maximum allowable sample size for the control arm (including the currently enrolled subjects). Default is NULL, meaning we are already at the final analysis.
y0_treatment	scalar. Number of events for the historical treatment arm.
N0_treatment	scalar. Number of observations of the historical treatment group.
y0_control	scalar. Number of events for the historical control arm.
N0_control	scalar. Number of observations of the historical control group.
alternative	character. The string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".
N_impute	scalar. Number of imputations for Monte Carlo simulation of missing data.
hØ	scalar. Threshold for comparing two mean values. Default is $h0 = 0$.
number_mcmc	scalar. Number of Markov Chain Monte Carlo draws in sampling posterior.
prob_ha	scalar. Probability of alternative hypothesis.
futility_prob	scalar. Probability of stopping early for futility.
expected_succes	s_prob
	scalar. Probability of stopping early for success.
prior	vector. Prior values of beta rate, Beta(a0, b0). The default is set to Beta(1, 1).
discount_functi	on
	character. If incorporating historical data, specify the discount function. Cur- rently supports the Weibull function (discount_function = "weibull"), the scaled-Weibull function (discount_function = "scaledweibull"), and the iden- tity function (discount_function = "identity"). The scaled-Weibull discount function scales the output of the Weibull CDF to have a maximum value of 1. The identity discount function uses the posterior probability directly as the dis- count weight. Default value is "identity". See bdpnormal for more details.
fix_alpha	logical. Fix alpha at alpha_max? Default value is FALSE.
alpha_max	scalar. Maximum weight the discount function can apply. Default is 1. For a two-arm trial, users may specify a vector of two values where the first value is used to weight the historical treatment group and the second value is used to weight the historical control group.
weibull_scale	scalar. Scale parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 0.135. For a two- arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".

weibuii_snape	the weight parameter of the historical data. Default value is 3. For a two-arm trial, users may specify a vector of two values where the first value is used
	to estimate the weight of the historical treatment group and the second value
	is used to estimate the weight of the historical control group. Not used when
	discount_function = "identity".
method	character. Analysis method with respect to estimation of the weight parameter alpha. Default method "mc" estimates alpha for each Monte Carlo iteration. Alternate value "fixed" estimates alpha once and holds it fixed throughout the
	analysis. See the the bdpsurvival vignette
	vignette("bdpsurvival-vignette", package="bayesDP") for more details.

a non-stand file Waihall discount for stice and to compute alab

Details

If the enrollment size is at the final sample size, i.e. the maximum allowable sample size for the trial, then this function is not of practical use since there is no opportunity to stop trial enrollment. In such a case, it is expected that the follow-up will be conducted per the study protocol and a final analysis made.

Value

A list of output for the Bayesian trial for binomial count:

- prob_of_accepting_alternative integer. The input parameter of probability of accepting the alternative.
- margin scalar. The margin input value of difference between mean estimate of treatment and mean estimate of the control.
- alternative character. The input parameter of alternative hypothesis.
- N_treatment integer. The number of patients enrolled in the experimental group for each simulation.
- N_control integer. The number of patients enrolled in the control group for each simulation.
- N_enrolled vector. The number of patients enrolled in the trial (sum of control and experimental group for each simulation.)
- N_complete integer. The number of patients who completed the trial and had no loss to follow-up.
- N_max_treatment integer. Maximum allowable sample size for the treatment arm (including the currently enrolled subjects).
- N_max_control integer. Maximum allowable sample size for the control arm (including the currently enrolled subjects).
- post_prob_accept_alternative scalar. The final probability of accepting the alternative hypothesis after the analysis is done.
- est_final scalar. The final estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.
- stop_futility integer. Did the trial stop for futility during imputation of patient who had loss to follow up? 1 for yes and 0 for no.
- stop_expected_success integer. Did the trial stop for early success during imputation of patient who had loss to follow up? 1 for yes and 0 for no.

binomial_outcome Proportion of an event in control and treatment

Description

Wrapper function for proportion of an event in control and treatment group with binomial outcome.

Usage

```
binomial_outcome(p_treatment = NULL, p_control = NULL, .data = NULL)
```

Arguments

p_treatment	numeric. The proportion of an event in the treatment group, 0 < \$p_treatment\$ < 1.
p_control	numeric. The proportion of an event in the control group, $0 < p_control < 1$.
.data	NULL. Stores the proportion of control and treatment. Should not be edited by the user.

Value

A list with proportion of control and treatment group.

Examples

```
binomial_outcome(p_control = 0.12, p_treatment = 0.08)
```

data_binomial Data file for binomial analysis

Description

Wrapper function for data file in binomial analysis.

Usage

```
data_binomial(treatment, outcome, complete, .data = NULL)
```

Arguments

treatment	vector. Treatment assignment for patients, 1 for treatment group and 0 for con- trol group
outcome	vector. Binomial outcome of the trial, 1 for response (success or failure), 0 for no response.
complete	vector. Similar length as treatment and outcome variable, 1 for complete outcome, 0 for loss to follow up. If complete is not provided, the dataset is assumed to be complete.
.data	NULL. Stores the binomial data for analysis. Should not be edited by user.

Value

A list with treatment, outcome and loss to follow up vector with binomial outcome.

Examples

```
data_binomial(treatment = c(0, 1), outcome = c(1, 1), complete = c(1, 1))
```

data_normal

Data file for continuous (normally distributed) data analysis

Description

Wrapper function for data file in normal analysis.

Usage

```
data_normal(treatment, outcome, complete, .data = NULL)
```

Arguments

treatment	vector. Treatment assignment for patients, 1 for treatment group and 0 for con- trol group
outcome	vector. Normal outcome of the trial.
complete	vector. Similar length as treatment and outcome variable, 1 for complete outcome, 0 for loss to follow up. If complete is not provided, the dataset is assumed to be complete.
.data	NULL. Stores the normal data for analysis. Should not be edited by the user.

Value

a list with treatment, outcome and loss to follow up vector with normal outcome.

data_survival

Description

Wrapper function for data file in survival analysis.

Usage

```
data_survival(time, treatment, event, .data = NULL)
```

Arguments

time	vector. exposure time for the subjects. It must be the same length as the treat- ment variable.
treatment	vector. Treatment assignment for patients, 1 for treatment group and 0 for con- trol group
event	vector. The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or $1/2$ (2 = death). For censored data, the status indicator is 0 = right censored, 1 = event at time. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have an event.
.data	NULL. Stores the survival data for analysis. Should not be edited by the user.

Value

A list with time, treatment, and event with time-to-event outcome.

Examples

data_survival(time	= c(6.2, 8.2,	8.6	ð, 2	2.3)),
	treatment = c	(0,	1,	0,	1),
	event = c	(1,	1,	1,	1))

enrollment Simulating enrollment dates
--

Description

This function simulates enrollment dates using either Poisson distribution

Usage

```
enrollment(param, N_total, time = NULL)
```

Arguments

param	vector. Lambda values for Poisson distribution.
N_total	integer. Value of total sample size.
time	vector. Knots (of length(param) - 1) indicating end of time when a specific lambda is used.

Value

A vector of enrollment times (from time of first patient enrollment) in days.

Examples

```
enrollment(param = c(0.003, 0.7), 100, time = 10)
enrollment(param = c(0.3, 0.5, 0.9, 1.2, 2.1), 200, c(20, 30, 40, 60))
```

enrollment_rate Enrollment rate wrapper

Description

Wrapper function for enrollment rate.

Usage

```
enrollment_rate(lambda = 0.3, time = NULL, .data = NULL)
```

Arguments

lambda	vector. Vector with different enrollment rate parameters.
time	vector. Vector with different cut-off times (knots) for lambda.
.data	NULL. This should not be changed by the user.

Value

A list with enrollment rate information.

Examples

enrollment_rate(lambda = c(0.3, 1), time = 25)

gamma_prior

Description

Wrapper function for gamma prior Gamma(a0, b0).

Usage

gamma_prior(a0 = 0.1, b0 = 0.1, .data = NULL)

Arguments

a0	numeric. The shape parameter in the gamma distribution ($beta(a0, b0)$).
b0	numeric. The scale parameter in the beta distribution (beta(a0, b0)).
.data	NULL. Stores the gamma prior rate. Should not be edited by the user.

Value

A list with vector of gamma rate for the gamma prior for treatment and control group.

Examples

gamma_prior(a0 = 0.1, b0 = 0.1)

historical_binomial Historical data for binomial distribution

Description

Wrapper function for historical data from binomial outcome.

Usage

```
historical_binomial(
  y0_treatment = NULL,
  N0_treatment = NULL,
  discount_function = "identity",
  y0_control = NULL,
  N0_control = NULL,
  alpha_max = 1,
  fix_alpha = FALSE,
  weibull_scale = 0.135,
  weibull_shape = 3,
  method = "fixed",
  .data = NULL
)
```

Arguments

y@_treatment scalar. Number of events for the historical treatment arm.

```
N0_treatment scalar. Number of observations of the historical treatment group.
```

discount_function

character. If incorporating historical data, specify the discount function. Currently supports the Weibull function (discount_function = "weibull"), the scaled-Weibull function (discount_function = "scaledweibull"), and the identity function (discount_function = "identity"). The scaled-Weibull discount function scales the output of the Weibull CDF to have a maximum value of 1. The identity discount function uses the posterior probability directly as the discount weight. Default value is "identity". See bdpnormal for more details.

- y0_control scalar. Number of events for the historical control arm.
- N0_control scalar. Number of observations of the historical control group.
- alpha_max scalar. Maximum weight the discount function can apply. Default is 1. For a two-arm trial, users may specify a vector of two values where the first value is used to weight the historical treatment group and the second value is used to weight the historical control group.

fix_alpha logical. Fix alpha at alpha_max? Default value is FALSE.

- weibull_scale scalar. Scale parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 0.135. For a twoarm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
- weibull_shape scalar. Shape parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 3. For a two-arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
- method character. Analysis method with respect to estimation of the weight parameter alpha. Default method "mc" estimates alpha for each Monte Carlo iteration. Alternate value "fixed" estimates alpha once and holds it fixed throughout the analysis. See the the bdpsurvival vignette vignette("bdpsurvival-vignette", package="bayesDP") for more details.
- . data NULL. Stores the proportion of control and treatment. Should not be edited by the user.

Value

A list with historical data for control and treatment group with the discount function.

Examples

```
historical_binomial(y0_treatment = 5, N0_treatment = 10, y0_control = 15, N0_control = 23)
historical_binomial(y0_treatment = 5, N0_treatment = 10, y0_control = 15, N0_control = 23,
```

```
discount_function = "weibull", alpha_max = 1, fix_alpha = FALSE,
weibull_scale = 0.135, weibull_shape = 3)
```

historical_normal Historical data for normal distribution

Description

Wrapper function for historical data from continuous (normally distributed) outcome.

Usage

```
historical_normal(
  mu0_treatment = NULL,
  sd0_treatment = NULL,
  N0_treatment = NULL,
  mu0_control = NULL,
  sd0_control = NULL,
  N0_control = NULL,
  discount_function = "identity",
  alpha_max = 1,
  fix_alpha = FALSE,
  weibull_scale = 0.135,
  weibull_shape = 3,
  method = "fixed",
  .data = NULL
)
```

mu0_treatment	scalar. Mean of the historical treatment group.			
sd0_treatment	scalar. Standard deviation of the historical treatment group.			
N0_treatment	_treatment scalar. Number of observations of the historical treatment group.			
mu0_control	scalar. Mean of the historical control group.			
sd0_control	scalar. Standard deviation of the historical control group.			
N0_control	scalar. Number of observations of the historical control group.			
discount_functi	discount_function			
	character. If incorporating historical data, specify the discount function. Cur- rently supports the Weibull function (discount_function = "weibull"), the scaled-Weibull function (discount_function = "scaledweibull"), and the iden- tity function (discount_function = "identity"). The scaled-Weibull discount function scales the output of the Weibull CDF to have a maximum value of 1. The identity discount function uses the posterior probability directly as the dis- count weight. Default value is "identity". See bdpnormal for more details.			

alpha_max	scalar. Maximum weight the discount function can apply. Default is 1. For a two-arm trial, users may specify a vector of two values where the first value is used to weight the historical treatment group and the second value is used to weight the historical control group.
fix_alpha	logical. Fix alpha at alpha_max? Default value is FALSE.
weibull_scale	scalar. Scale parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 0.135. For a two- arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
weibull_shape	scalar. Shape parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 3. For a two-arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
method	character. Analysis method with respect to estimation of the weight parameter alpha. Default method "mc" estimates alpha for each Monte Carlo iteration. Al- ternate value "fixed" estimates alpha once and holds it fixed throughout the analysis. See the the bdpsurvival vignette vignette("bdpsurvival-vignette", package="bayesDP") for more details.
.data	NULL. Stores the normal data for analysis. Should not be edited by the user.

Value

A list with historical data for control and treatment group with the discount function.

Examples

historical_survival Historical data for survival analysis

Description

Wrapper function for historical data from time-to-event outcome.

historical_survival

Usage

```
historical_survival(
  time = NULL,
  treatment = NULL,
  event = NULL,
  discount_function = "identity",
  alpha_max = 1,
  fix_alpha = FALSE,
  weibull_scale = 0.135,
  weibull_shape = 3,
  method = "fixed",
  .data = NULL
)
```

time	vector. exposure time for the subjects. It must be the same length as the treat- ment variable.
treatment	vector. Treatment assignment for patients, 1 for treatment group and 0 for con- trol group
event	vector. The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or $1/2$ (2 = death). For censored data, the status indicator is 0 = right censored, 1 = event at time. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have an event.
discount_funct:	ion
	character. If incorporating historical data, specify the discount function. Cur- rently supports the Weibull function (discount_function = "weibull"), the scaled-Weibull function (discount_function = "scaledweibull"), and the iden- tity function (discount_function = "identity"). The scaled-Weibull discount function scales the output of the Weibull CDF to have a maximum value of 1. The identity discount function uses the posterior probability directly as the dis- count weight. Default value is "identity". See bdpnormal for more details.
alpha_max	scalar. Maximum weight the discount function can apply. Default is 1. For a two-arm trial, users may specify a vector of two values where the first value is used to weight the historical treatment group and the second value is used to weight the historical control group.
fix_alpha	logical. Fix alpha at alpha_max? Default value is FALSE.
weibull_scale	scalar. Scale parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 0.135. For a two- arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
weibull_shape	scalar. Shape parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 3. For a two-arm trial, users may specify a vector of two values where the first value is used

	to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
method	character. Analysis method with respect to estimation of the weight parameter alpha. Default method "mc" estimates alpha for each Monte Carlo iteration. Al- ternate value "fixed" estimates alpha once and holds it fixed throughout the analysis. See the the bdpsurvival vignette vignette("bdpsurvival-vignette", package="bayesDP") for more details.
.data	NULL. Stores the historical time, treatment and event. Should not be edited by the user.

Value

A list with historical data for time-to-event outcome with the discount function.

Examples

hypothesis	Hypothesis wrapper

Description

Wrapper function for the hypothesis in the trial.

Usage

```
hypothesis(
  delta = 0,
  futility_prob = 0.05,
  prob_accept_ha = 0.95,
  expected_success_prob = 0.9,
  alternative = "greater",
  .data = NULL
)
```

delta	numeric. Threshold set for margin in null hypothesis. The default is set to 0.
futility_prob	numeric. Probability of futility. The default is 0.05.
prob_accept_ha	numeric. Posterior probability of accepting alternative hypothesis. The default is 0.95.

impute

expected_succes	s_prob
	numeric. Probability of expected success.
alternative	character. The string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".
.data	NULL. This should not be changed by the user.

Value

A list with information of hypothesis testing (threshold, futility probability, probability of accepting the alternative hypothesis, and probability of expected success).

Examples

impute

Imputation wrapper

Description

Wrapper function for no_of_impute.

Usage

```
impute(no_of_impute = 10000, number_mcmc = 10000, .data = NULL)
```

Arguments

<pre>no_of_impute</pre>	integer. Number of Monte Carlo imputations for missing data.
number_mcmc	scalar. Number of Markov Chain Monte Carlo (MCMC) draws from posterior distribution.
.data	NULL. This should not be changed by the user.

Value

A list with number of imputation.

Examples

```
impute(no_of_impute = 100, number_mcmc = 1000)
```

normalBACT

Description

Simulation of continuous (normally distributed) data for Bayesian adaptive trials with various inputs to control for power, sample size, type I error rate, etc.

Usage

```
normalBACT(
 mu_treatment,
  sd_treatment,
 mu_control = NULL,
  sd_control = NULL,
 mu0_treatment = NULL,
  sd0_treatment = NULL,
 N0_treatment = NULL,
 mu0_control = NULL,
  sd0_control = NULL,
 N0\_control = NULL,
 N_total,
  lambda = 0.3,
  lambda_time = NULL,
  interim_look = NULL,
  EndofStudy,
  block = 2,
  rand_ratio = c(1, 1),
  discount_function = "identity",
  alternative = "greater",
  prop_loss_to_followup = 0.15,
  h0 = 0,
  futility_prob = 0.05,
  expected_success_prob = 0.9,
  prob_ha = 0.95,
 N_{impute} = 10,
  number_mcmc = 10000,
  alpha_max = 1,
  fix_alpha = FALSE,
  weibull_scale = 0.135,
 weibull_shape = 3,
 method = "fixed"
)
```

Arguments

mu_treatment scalar. Mean outcome in the treatment arm.

<pre>sd_treatment</pre>	scalar. Standard deviation of outcome in the treatment.	
mu_control	scalar. Mean outcome in the control arm.	
sd_control	scalar. Standard deviation of outcome in the control arm. arm.	
mu0_treatment	scalar. Mean of the historical treatment group.	
sd0_treatment	scalar. Standard deviation of the historical treatment group.	
N0_treatment	scalar. Number of observations of the historical treatment group.	
mu0_control	scalar. Mean of the historical control group.	
sd0_control	scalar. Standard deviation of the historical control group.	
N0_control	scalar. Number of observations of the historical control group.	
N_total	scalar. Total sample size.	
lambda	vector. Enrollment rates across simulated enrollment times. See enrollment for more details.	
lambda_time	vector. Enrollment time(s) at which the enrollment rates change. Must be same length as lambda. See enrollment for more details.	
interim_look	vector. Sample size for each interim look. Note: the maximum sample size should not be included.	
EndofStudy	scalar. Length of the study.	
block	scalar. Block size for generating the randomization schedule.	
rand_ratio	vector. Randomization allocation for the ratio of control to treatment. Integer values mapping the size of the block. See randomization for more details.	
discount_functi	on	
	character. If incorporating historical data, specify the discount function. Cur- rently supports the Weibull function (discount_function = "weibull"), the scaled-Weibull function (discount_function = "scaledweibull"), and the iden- tity function (discount_function = "identity"). The scaled-Weibull discount function scales the output of the Weibull CDF to have a maximum value of 1. The identity discount function uses the posterior probability directly as the dis- count weight. Default value is "identity". See bdpnormal for more details.	
alternative	character. The string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".	
prop_loss_to_fo	llowup	
	scalar. Overall proportion of subjects lost to follow-up.	
hØ	scalar. Threshold for comparing two mean values. Default is $h0 = 0$.	
futility_prob	scalar. Probability of stopping early for futility.	
expected_succes	s_prob scalar. Probability of stopping early for success	
nroh ha	scalar. Probability of alternative hypothesis	
N impute	scalar. Number of imputations for Monte Carlo simulation of missing data	
number mcmc	scalar. Number of Markov Chain Monte Carlo draws in campling posterior	
alpha max	scalar. Maximum weight the discount function can apply. Default is 1. For a	
ατριια_ιιιαχ	two-arm trial, users may specify a vector of two values where the first value is used to weight the historical treatment group and the second value is used to weight the historical control group.	

fix_alpha	logical. Fix alpha at alpha_max? Default value is FALSE.
weibull_scale	scalar. Scale parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 0.135. For a two- arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
weibull_shape	scalar. Shape parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 3. For a two-arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
method	character. Analysis method with respect to estimation of the weight parameter alpha. Default method "mc" estimates alpha for each Monte Carlo iteration. Al- ternate value "fixed" estimates alpha once and holds it fixed throughout the analysis. See the the bdpsurvival vignette vignette("bdpsurvival-vignette", package="bayesDP") for more details.

Value

A list of output for a single trial simulation:

mu_treatment scalar. The input parameter of mean value of the outcome in the treatment group.

p_control scalar. The input parameter of mean value of the outcome in the control group.

- sd_treatment scalar. The input parameter of standard deviation of the outcome in the control
 group.
- sd_control scalar. The input parameter of standard deviation of the outcome in the control group.
- prob_of_accepting_alternative scalar. The input parameter of probability threshold of accepting the alternative.
- margin scalar. The margin input value of difference between mean estimate of treatment and mean estimate of the control.
- alternative character. The input parameter of alternative hypothesis.
- interim_look vector. The sample size for each interim look.
- N_treatment scalar. The number of patients enrolled in the experimental group for each simulation.
- N_control scalar. The number of patients enrolled in the control group for each simulation.
- N_enrolled vector. The number of patients enrolled in the trial (sum of control and experimental group for each simulation).
- N_complete scalar. The number of patients who completed the trial and had no loss to follow-up.
- post_prob_accept_alternative vector. The final probability of accepting the alternative hypothesis after the analysis is done.
- est_final scalar. The final estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.

normaldata

- stop_futility scalar. Did the trial stop for futility during imputation of patient who had loss to follow up? 1 for yes and 0 for no.
- stop_expected_success scalar. Did the trial stop for early success during imputation of patient who had loss to follow up? 1 for yes and 0 for no.
- est_interim scalar. The interim estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.

normaldata

Gaussian dataset for analyzing adaptive Bayesian trials

Description

A dataset containing the results of 300 patients with continuous (normal) outcome, the dataset is filled with loss to follow up.

Usage

data(normaldata)

Format

A data frame with 300 rows and 4 variables:

id Patient ID in the trial.

treatment Treatment assignment for patients, 1 for treatment group 0 for control group.

outcome Continuous outcome of the trial (Gaussian distributed).

complete 1 for complete outcome, 0 for loss to follow-up.

Examples

data(normaldata)

normal_analysis Analyzing Bayesian trial for continuous (normally distributed) data

Description

Function to analyze Bayesian trial for continuous (normally distributed) data, which allows early stopping and incorporation of historical data using the discount function approach.

Usage

```
normal_analysis(
  treatment,
  outcome,
  complete = NULL,
 N_max_treatment = NULL,
 N_max_control = NULL,
 mu0_treatment = NULL,
  sd0_treatment = NULL,
 N0_treatment = NULL,
 mu0\_control = NULL,
  sd0_control = NULL,
 N0\_control = NULL,
  alternative = "greater",
 N_{impute} = 100,
 h0 = 0,
  number_mcmc = 10000,
  prob_ha = 0.95,
  futility_prob = 0.1,
  expected_success_prob = 0.9,
  discount_function = "identity",
  fix_alpha = FALSE,
  alpha_max = 1,
 weibull_scale = 0.135,
 weibull_shape = 3,
 method = "fixed"
)
```

Arguments

treatment	vector. Treatment assignment for patients, 1 for treatment group and 0 for control group.	
outcome	vector. Normal outcome of the trial.	
complete	vector. Similar length as treatment and outcome variable, 1 for complete outcome, 0 for loss to follow up. If complete is not provided, the dataset is assumed to be complete.	
N_max_treatment		
	integer. Maximum allowable sample size for the treatment arm (including the currently enrolled subjects). Default is NULL, meaning we are already at the final analysis.	
N_max_control	integer. Maximum allowable sample size for the control arm (including the currently enrolled subjects). Default is NULL, meaning we are already at the final analysis.	
mu0_treatment	scalar. Mean of the historical treatment group.	
sd0_treatment	scalar. Standard deviation of the historical treatment group.	
N0_treatment	scalar. Number of observations of the historical treatment group.	

26

mu0_control	scalar. Mean of the historical control group.	
sd0_control	scalar. Standard deviation of the historical control group.	
N0_control	scalar. Number of observations of the historical control group.	
alternative	character. The string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".	
N_impute	scalar. Number of imputations for Monte Carlo simulation of missing data.	
hØ	scalar. Threshold for comparing two mean values. Default is $h0 = 0$.	
number_mcmc	scalar. Number of Markov Chain Monte Carlo draws in sampling posterior.	
prob_ha	scalar. Probability of alternative hypothesis.	
futility_prob	scalar. Probability of stopping early for futility.	
expected_success_prob		
	scalar. Probability of stopping early for success.	
discount_functi	on	
	character. If incorporating historical data, specify the discount function. Cur- rently supports the Weibull function (discount_function = "weibull"), the scaled-Weibull function (discount_function = "scaledweibull"), and the iden- tity function (discount_function = "identity"). The scaled-Weibull discount function scales the output of the Weibull CDF to have a maximum value of 1. The identity discount function uses the posterior probability directly as the dis- count weight. Default value is "identity". See bdpnormal for more details.	
fix alpha	logical Fix alpha at alpha max? Default value is FALSE	

- logical. Fix alpha at alpha_max? Default value is FALSE. fix_alpha
- alpha_max scalar. Maximum weight the discount function can apply. Default is 1. For a two-arm trial, users may specify a vector of two values where the first value is used to weight the historical treatment group and the second value is used to weight the historical control group.
- scalar. Scale parameter of the Weibull discount function used to compute alpha, weibull_scale the weight parameter of the historical data. Default value is 0.135. For a twoarm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
- weibull_shape scalar. Shape parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 3. For a two-arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
- method character. Analysis method with respect to estimation of the weight parameter alpha. Default method "mc" estimates alpha for each Monte Carlo iteration. Alternate value "fixed" estimates alpha once and holds it fixed throughout the analysis. See the the bdpsurvival vignette

Details

If the enrollment size is at the final sample size, i.e. the maximum allowable sample size for the trial, then this function is not of practical use since there is no opportunity to stop trial enrollment. In such a case, it is expected that the follow-up will be conducted per the study protocol and a final analysis made.

Value

A list of output for the analysis of Bayesian trial for normal mean:

- prob_of_accepting_alternative scalar. The input parameter of probability of accepting the alternative.
- margin scalar. The margin input value of difference between mean estimate of treatment and mean estimate of the control.
- alternative character. The input parameter of alternative hypothesis.
- N_treatment scalar. The number of patients enrolled in the experimental group for each simulation.
- N_control scalar. The number of patients enrolled in the control group for each simulation.
- N_enrolled vector. The number of patients enrolled in the trial (sum of control and experimental group for each simulation).
- N_complete scalar. The number of patients who completed the trial and had no loss to follow-up.
- N_max_treatment integer. Maximum allowable sample size for the treatment arm (including the currently enrolled subjects).
- N_max_control integer. Maximum allowable sample size for the control arm (including the currently enrolled subjects).
- post_prob_accept_alternative vector. The final probability of accepting the alternative hypothesis after the analysis is done.
- est_final scalar. The final estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.
- stop_futility scalar. Did the trial stop for futility during imputation of patient who had loss to
 follow up? 1 for yes and 0 for no.
- stop_expected_success scalar. Did the trial stop for early success during imputation of patient who had loss to follow up? 1 for yes and 0 for no.

normal_outcome

Parameters for treatment and control in continuous (normally distributed) data case

Description

Wrapper function for mean and standard deviation with continuous (normally distributed) outcome.

pw_exp_impute

Usage

```
normal_outcome(
  mu_control = NULL,
  sd_control = NULL,
  mu_treatment = NULL,
  sd_treatment = NULL,
  .data = NULL
)
```

Arguments

mu_control	numeric. The mean for the control group.
sd_control	numeric. The standard deviation for the control group.
mu_treatment	numeric. The mean for the treatment group.
sd_treatment	numeric. The standard deviation for the treatment group.
.data	NULL. Stores the normal data for analysis. Should not be edited by the user

Value

A list with means and standard deviations for control and treatment groups.

Examples

pw_exp_impute Imputes time-to-event outcomes.

Description

Imputation of time-to-event outcomes using the piecewise constant hazard exponential function.

Usage

```
pw_exp_impute(time, hazard, maxtime = NULL, cutpoint = NULL)
```

time	vector. The observed time for patient that have had no event or passed maxtime.
hazard	vector. The constant hazard rates for exponential failures.
maxtime	scalar. maximum time before end of study.
cutpoint	vector. The change-point vector indicating time when the hazard rates change.

Value

a dataset with simulated follow-up time (time) and respective event indicator (1 = event, 0 = censoring)

Examples

pw_exp_sim Simulates time-to-event outcomes.

Description

Simulation of time-to-event outcomes using the piecewise constant hazard exponential function.

Usage

```
pw_exp_sim(hazard, n, maxtime = NULL, cutpoint = NULL)
```

Arguments

hazard	vector. The constant hazard rates for exponential failures.
n	scalar. The number of outcomes for simulation.
maxtime	scalar. maximum time before end of study.
cutpoint	vector. The change-point vector indicating time when the hazard rates change.

Value

a dataset with simulated follow-up time (time) and respective event indicator (1 = event, 0 = censoring)

Examples

30

randomization

Description

Implements a randomization allocation for control and treatment arms with different randomization ratios and block sizes.

Usage

```
randomization(N_total, block = 2, allocation = c(1, 1))
```

Arguments

N_total	an integer value of total sample size for randomization allocation.	
block	a vector value of the block size for randomization. Note that it needs to be a multiple of the sum of allocation.	
allocation	a numeric vector of the randomization allocation in the order c(control, treatment).	

Value

the randomization allocation with 0, 1 for control and treatment

Examples

```
# Implementing treatment allocation for control to treatment with 1:1.5
# randomization ratio
randomization(N_total = 100, block = 5, allocation = c(2, 3))
# Treatment allocation with 2:1 for control to treatment
randomization(N_total = 70, block = 9, allocation = c(2, 1))
# Treatment allocation for control to treatment with 1:2 for control
# to treatment with multiple block sizes c(3, 9, 6)
randomization(N_total = 100, block = c(3, 9, 6), allocation = c(1, 2))
# For complete randomization set the N_total to block size
```

```
randomization(N_total = 100, block = 100, allocation = c(1, 1))
```

randomize

Description

Wrapper function for the randomization scheme in the trial.

Usage

```
randomize(block_size = 2, randomization_ratio = c(1, 1), .data = NULL)
```

Arguments

block_size	integer. Block size for the complete randomization in a block.		
randomization_ratio			
	vector. The randomization allocation for control to treatment.		
.data	NULL. This should not be changed by the user.		

Value

A list with randomization details (block size and ratio).

Examples

randomize(block_size = 100, randomization_ratio = c(2, 3)) randomize(block_size = 10, randomization_ratio = c(1, 4))

simulate

Simulation wrapper for binomial and normal

Description

Wrapper function for complete binomial and normal function to compute power and type I error.

Usage

simulate(input, no_of_sim = 10000, .data = NULL)

input	list. Input function for all inputs in binomial, normal, and survival.
no_of_sim	numeric. Number of simulations to run.
.data	NULL. Stores the proportion of control and treatment, please do not fill it in.

study_details

Value

A list with results of the simulation (power and type I error) and the input.

input A list of input values used in the trial simulation.

- power data frame. A data frame with the interim look and power at each look.
- type1_error scalar. The type I error or the proportion of times the trial rejects the null when the parameters are simulated under the null hypothesis.
- est_final vector. The final estimate of the difference in posterior estimate of treatment and posterior estimate of the control group for all the simulations.
- post_prob_accept_alternative vector. The final probability of accepting the alternative for the simulations.
- N_enrolled vector. The number of patients enrolled in the trial (sum of control and experimental group for each simulation).
- stop_futility vector. Did the trial stop for futility during imputation of patient who had loss to follow up? 1 for yes and 0 for no.
- stop_expected_success vector. Did the trial stop for early success during imputation of patient who had loss to follow up? 1 for yes and 0 for no.

study_details Details of the clinical study

Description

Wrapper function for details of the clinical trial simulation.

Usage

```
study_details(
   total_sample_size,
   study_period,
   interim_look = NULL,
   prop_loss_to_followup = 0.1,
   .data = NULL
)
```

```
total_sample_size
```

	integer. The total sample size.
study_period	integer. The length of the study (in days).
interim_look	vector. Vector with interim looks (sample sizes).
prop_loss_to_f	ollowup
	integer. The proportion of loss to follow-up.
.data	NULL. This should not be changed by the user.

A list with sample size, length of the study, interim looks and proportion loss to follow up.

Examples

survivalBACT

Time-to-event outcome for Bayesian Adaptive trials

Description

Simulation for time-to-event outcome for Bayesian Adaptive trial with different inputs to control for power, sample size, type 1 error rate, etc.

Usage

```
survivalBACT(
  hazard_treatment,
  cutpoint = NULL,
  hazard_control = NULL,
 N_total,
 breaks = NULL,
  time0 = NULL,
  treatment0 = NULL,
  event0 = NULL,
  lambda = 0.3,
  lambda_time = NULL,
  interim_look = NULL,
 EndofStudy,
 prior = c(0.1, 0.1),
 block = 2,
  rand_ratio = c(1, 1),
  prop_loss_to_followup = 0.1,
  alternative = "greater",
  h0 = 0,
  futility_prob = 0.05,
  expected_success_prob = 0.9,
  prob_ha = 0.95,
 N_{impute} = 10,
  number_mcmc = 10000,
  discount_function = "identity",
  alpha_max = 1,
  fix_alpha = FALSE,
 weibull_scale = 0.135,
 weibull_shape = 3,
```

method = "fixed"
)

hazard_treatment		
	vector. Constant hazard rates under the treatment arm.	
cutpoint	vector. The change-point vector indicating time when the hazard rates change.	
hazard_control	vector. Constant hazard rates under the control arm.	
N_total	scalar. Total sample size.	
breaks	vector. Breaks (interval starts) used to compose the breaks of the piecewise exponential model. Do not include zero. Default breaks are the quantiles of the input times.	
time0	vector. Historical exposure time for the subjects. It must be the same length as the treatment variable.	
treatment0	vector. the historical treatment assignment for patients, 1 for treatment group and 0 for control group.	
event0	vector. Historical status indicator, normally 0 =alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2 = death). For censored data, the status indicator is 0 = right censored, 1 = event at time. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have an event.	
lambda	vector. Enrollment rates across simulated enrollment times. See enrollment for more details.	
lambda_time	vector. Enrollment time(s) at which the enrollment rates change. Must be same length as lambda. See enrollment for more details.	
interim_look	vector. Sample size for each interim look. Note: the maximum sample size should not be included.	
EndofStudy	scalar. Length of the study.	
prior	vector. Prior values of the gamma rate, $Gamma(a0, b0)$. The default is set to $Gamma(0.1, 0.1)$.	
block	scalar. Block size for generating the randomization schedule.	
rand_ratio	vector. Randomization allocation for the ratio of control to treatment. Integer values mapping the size of the block. See randomization for more details.	
prop_loss_to_followup		
	scalar. Overall proportion of subjects lost to follow-up.	
alternative	character. The string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".	
hØ	scalar. Threshold for comparing two mean values. Default is $h0 = 0$.	
futility_prob	scalar. Probability of stopping early for futility.	
expected_success_prob		
nach ha	scalar. Probability of stopping early for success.	
prop_na	scalar. Probability of alternative hypothesis.	
N_1mpute	scalar. Number of imputations for Monte Carlo simulation of missing data.	

number_mcmc scalar. Number of Markov Chain Monte Carlo draws in sampling posterior. discount_function character. If incorporating historical data, specify the discount function. Currently supports the Weibull function (discount_function = "weibull"), the scaled-Weibull function (discount_function = "scaledweibull"), and the identity function (discount_function = "identity"). The scaled-Weibull discount function scales the output of the Weibull CDF to have a maximum value of 1. The identity discount function uses the posterior probability directly as the discount weight. Default value is "identity". See bdpnormal for more details. alpha_max scalar. Maximum weight the discount function can apply. Default is 1. For a two-arm trial, users may specify a vector of two values where the first value is used to weight the historical treatment group and the second value is used to weight the historical control group. fix_alpha logical. Fix alpha at alpha_max? Default value is FALSE. weibull_scale scalar. Scale parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 0.135. For a twoarm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity". scalar. Shape parameter of the Weibull discount function used to compute alpha, weibull_shape the weight parameter of the historical data. Default value is 3. For a two-arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when

method character. Analysis method with respect to estimation of the weight parameter alpha. Default method "mc" estimates alpha for each Monte Carlo iteration. Alternate value "fixed" estimates alpha once and holds it fixed throughout the analysis. See the the bdpsurvival vignette vignette("bdpsurvival-vignette", package="bayesDP") for more details.

discount_function = "identity".

Value

A list of output for a single trial simulation.

lambda_treatment vector. The input parameter of constant hazard rates in the treatment group.

- cutpoint_treatment vector. The change-point vector when the constant hazard rate(s) changes for the treatment group.
- lambda_control vector. The input parameter of constant hazard rates in the control group.
- cutpoint_control vector. The change-point vector when the constant hazard rate(s) changes for the control group.
- prob_of_accepting_alternative scalar. The input parameter of probability threshold of accepting the alternative.
- margin scalar. The margin input value of difference between mean estimate of treatment and mean estimate of the control.

survivaldata

alternative character. The input parameter of alternative hypothesis.

interim_look vector. The sample size for each interim look.

N_treatment scalar. The number of patients enrolled in the treatment group for each simulation.

event_treatment scalar. The number of events in the treatment group for each simulation.

N_control scalar. The number of patients enrolled in the control group for each simulation.

event_control scalar. The number of events in the control group for each simulation.

- N_enrolled vector. The number of patients enrolled in the trial (sum of control and experimental group for each simulation).
- N_complete scalar. The number of patients who completed the trial and had no loss to follow-up.
- post_prob_accept_alternative vector. The final probability of accepting the alternative hypothesis after the analysis is done.
- est_final scalar. The final estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.
- stop_futility scalar. Did the trial stop for futility during imputation of patient who had loss to follow up? 1 for yes and 0 for no.
- stop_expected_success scalar. Did the trial stop for early success during imputation of patient who had loss to follow up? 1 for yes and 0 for no.
- est_interim scalar. The interim estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.

survivaldata Time-to-event dataset for analyzing adaptive Bayesian trials

Description

A dataset containing the results of 100 patients with time-to-event outcome, the dataset is filled with treatment assignment and status (0 =censored, 1 =not censored).

Usage

data(survivaldata)

Format

A data frame with 100 rows and 4 variables:

id Patient ID in the trial.

treatment Treatment assignment for patients, 1 for treatment group 0 for control group.

time The follow up time for patients.

event The status indicator, normally 0=alive, 1=dead or 0 = no event, 1 = event occurred.

Examples

data(survivaldata)

survival_analysis

Description

Function to analyze Bayesian trial for time-to-event data which allows early stopping and incorporation of historical data using the discount function approach.

Usage

```
survival_analysis(
  time,
  treatment,
  event = NULL,
  time0 = NULL,
  treatment0 = NULL,
  event0 = NULL,
  surv_time = NULL,
 h0 = 0,
 breaks = NULL,
  alternative = "greater",
 N_{impute} = 10,
 number_mcmc = 10000,
 prob_ha = 0.95,
  futility_prob = 0.1,
  expected_success_prob = 0.9,
  prior = c(0.1, 0.1),
  discount_function = "identity",
  fix_alpha = FALSE,
  alpha_max = 1,
 weibull_scale = 0.135,
 weibull_shape = 3,
 method = "fixed"
)
```

time	vector. exposure time for the subjects. It must be the same length as the treat- ment variable.
treatment	vector. Treatment assignment for patients, 1 for treatment group and 0 for con- trol group
event	vector. The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or $1/2$ (2 = death). For censored data, the status indicator is 0 = right censored, 1 = event at time. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have an event.

time0	vector. Historical exposure time for the subjects. It must be the same length as the treatment variable.
treatment0	vector. the historical treatment assignment for patients, 1 for treatment group and 0 for control group.
event0	vector. Historical status indicator, normally 0 =alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2 = death). For censored data, the status indicator is 0 = right censored, 1 = event at time. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have an event.
surv_time	scalar. scalar. Survival time of interest for computing the probability of survival for a single arm (OPC) trial. Default is overall (pooled), i.e. current and historical, median survival time.
hØ	scalar. Threshold for comparing two mean values. Default is $h0 = 0$.
breaks	vector. Breaks (interval starts) used to compose the breaks of the piecewise exponential model. Do not include zero. Default breaks are the quantiles of the input times.
alternative	character. The string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".
N_impute	scalar. Number of imputations for Monte Carlo simulation of missing data.
number_mcmc	scalar. Number of Markov Chain Monte Carlo draws in sampling posterior.
prob_ha	scalar. Probability of alternative hypothesis.
futility_prob	scalar. Probability of stopping early for futility.
expected_succes	s_prob
	scalar. Probability of stopping early for success.
prior	vector. Prior values of the gamma rate, Gamma(a0, b0). The default is set to Gamma(0.1, 0.1).
discount_functi	on
	character. If incorporating historical data, specify the discount function. Cur- rently supports the Weibull function (discount_function = "weibull"), the scaled-Weibull function (discount_function = "scaledweibull"), and the iden- tity function (discount_function = "identity"). The scaled-Weibull discount function scales the output of the Weibull CDF to have a maximum value of 1. The identity discount function uses the posterior probability directly as the dis- count weight. Default value is "identity". See bdpnormal for more details.
fix_alpha	logical. Fix alpha at alpha_max? Default value is FALSE.
alpha_max	scalar. Maximum weight the discount function can apply. Default is 1. For a two-arm trial, users may specify a vector of two values where the first value is used to weight the historical treatment group and the second value is used to weight the historical control group.
weibull_scale	scalar. Scale parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 0.135. For a two- arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".

weibull_shape	scalar. Shape parameter of the Weibull discount function used to compute alpha, the weight parameter of the historical data. Default value is 3. For a two-arm trial, users may specify a vector of two values where the first value is used to estimate the weight of the historical treatment group and the second value is used to estimate the weight of the historical control group. Not used when discount_function = "identity".
method	character. Analysis method with respect to estimation of the weight parameter alpha. Default method "mc" estimates alpha for each Monte Carlo iteration. Al- ternate value "fixed" estimates alpha once and holds it fixed throughout the analysis. See the the bdpsurvival vignette vignette("bdpsurvival-vignette", package="bayesDP") for more details.

Value

A list of output for the Bayesian trial for time-to-event:

- prob_of_accepting_alternative scalar. The input parameter of probability of accepting the alternative.
- margin scalar. The margin input value of difference between mean estimate of treatment and mean estimate of the control.
- alternative character. The input parameter of alternative hypothesis.
- alpha_max scalar. The alpha_max input.
- N_treatment scalar. The number of patients enrolled in the experimental group for each simulation.
- event_treatment scalar. The number of events in the experimental group for each simulation.
- N_control scalar. The number of patients enrolled in the control group for each simulation.
- event_control scalar. The number of events in the control group for each simulation.
- N_enrolled scalar. The number of patients enrolled in the trial (sum of control and experimental group for each simulation).
- N_complete scalar. The number of patients whose time passes the surv_time.
- alpha_discount vector. The alpha discount function used for control and treatment.
- post_prob_accept_alternative vector. The final probability of accepting the alternative hypothesis after the analysis is done.
- est_final scalar. The final estimate of the difference in posterior estimate of treatment and posterior estimate of the control group.
- stop_futility scalar. Did the trial stop for futility during imputation of patient who had loss to follow up? 1 for yes and 0 for no.
- stop_expected_success scalar. Did the trial stop for early success during imputation of patient who had loss to follow up? 1 for yes and 0 for no.

survival_outcome

Description

Wrapper function for the piecewise constant hazard rates and the cutpoint for control and treatment group.

Usage

```
survival_outcome(
   hazard_treatment = NULL,
   cutpoint = NULL,
   hazard_control = NULL,
   .data = NULL
)
```

Arguments

hazard_treatment		
	vector. Constant hazard rates under the treatment arm.	
cutpoint	vector. The change-point vector indicating time when the hazard rates change.	
hazard_control	vector. Constant hazard rates under the control arm.	
.data	NULL. Stores the hazard rates and cutpoint. Should not be edited by the user.	

Value

A list with hazard rates and cutpoint for control and treatment group.

Examples

Index

binomialdata, 7

* datasets

```
normaldata, 25
* dataset
    normaldata, 25
    survivaldata, 37
analysis, 2
bdpnormal, 6, 9, 16, 17, 19, 23, 27, 36, 39
bdpsurvival, 6, 10, 16, 18, 20, 24, 27, 36, 40
beta_prior, 4
binomial_analysis, 8
binomial_outcome, 11
binomialBACT, 4
binomialdata, 7
data_binomial, 11
data_normal, 12
data_survival, 13
enrollment, 5, 13, 23, 35
enrollment_rate, 14
gamma_prior, 15
historical_binomial, 15
historical_normal, 17
historical_survival, 18
hypothesis, 20
impute, 21
normal_analysis, 25
normal_outcome, 28
normalBACT, 22
normaldata, 25
pw_exp_impute, 29
pw_exp_sim, 30
randomization, 5, 23, 31, 35
```

randomize, 32

```
simulate, 32
study_details, 33
survival_analysis, 38
survival_outcome, 41
survivalBACT, 34
survivaldata, 37
```